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Abstract
In this paper, we propose a lattice dynamic treatment for the total potential energy of
single-walled carbon nanotubes (SWCNTs) which is, apart from a parameter for the nonlinear
effects, extracted from the vibrational energy of the planar graphene sheet. The energetics,
elasticity and lattice dynamics are treated in terms of the same set of force constants,
independently of the tube structures. Based upon this proposal, we have investigated
systematically the relaxed lattice configuration for narrow SWCNTs, the strain energy, the
Young’s modulus and Poisson ratio, and the lattice vibrational properties with respect to the
relaxed equilibrium tubule structure. Our calculated results for various physical quantities are
nicely in consistency with existing experimental measurements. In particular, we verified that
the relaxation effect makes the bond length longer and the frequencies of various optical
vibrational modes softer. Our calculation provides evidence that the Young’s modulus of an
armchair tube exceeds that of the planar graphene sheet, and that the large diameter limits of the
Young’s modulus and Poisson ratio are in agreement with the experimental values of graphite;
the calculated radial breathing modes for ultra-narrow tubes with diameters ranging between 2
and 5 Å coincide with the experimental results and the existing ab initio calculations with
satisfaction. For narrow tubes with a diameter of 20 Å, the calculated frequencies of optical
modes in the tubule’s tangential plane, as well as those of radial breathing modes, are also in
good agreement with the experimental measurements. In addition, our calculation shows that
various physical quantities of relaxed SWCNTs can actually be expanded in terms of the chiral
angle defined for the corresponding ideal SWCNTs.

1. Introduction

After the discovery of carbon nanotubes (CNTs) in 1991 [1],
several methods have been developed for preparing CNTs with

ultra-small diameters. Previously, CNTs were synthesized in
free space [2, 3] and the quotient of narrow CNTs was quite
low. Afterwards, Tang et al [4–7] initiated the growth of
single-walled carbon nanotubes (SWCNTs) inside a channel
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of zeolite template. SWCNTs prepared in this way have a
diameter as small as 4.2 ± 0.2 Å. Actually, there are three
kinds of tubes with different chiralities in this diameter range:
(5, 0), (4, 2), and (3, 3). The fabrication process was further
developed to prepare a type of sample with (5, 0) and (3, 3)
chiralities only [8] with a very narrow diameter distribution.
More recently, stable CNTs with a diameter of 3 Å is found
inside a multi-walled carbon nanotube [9]. As is shown by
density functional studies [9], this CNT might be interpreted as
an armchair CNT (2, 2) with a radial breathing mode (RBM) at
787 cm−1. All these technological improvements progressively
stimulated experimental and theoretical studies on ultra-narrow
SWCNTs [10–17].

Since the narrow CNTs possess largish curvatures,
equilibrium geometries would deviate from the ideal geometry,
i.e. deduced from a seamlessly rolled up planar graphitic lattice
sheet referring to a chiral vector �R = n1�a1+n2�a2 [18]. Various
methods have been developed to determine the equilibrium
geometry of free SWCNTs [10, 19–22]. Among others,
in [10] the author calculated the total energy for narrow
SWCNTs using a first-principles, all-electron, self-consistent
local-density functional band-structure method. The calculated
total energy can be parameterized in terms of five profitable
parameters—i.e. generalized motif variables (GMVs)—with
the line-group symmetry intimately retained. The equilibrium
geometry is obtained by an optimization procedure with
respect to these GMVs. In [20], a molecular mechanical model
for the effective total potential energy is proposed to calculate
the equilibrium structure and the strain energy of achiral
SWCNTs that is a quadratic form of lattice site displacements
with respect to the planar graphite sheet. Apart from deviations
of three bond lengths and three bond angles, a pyramidalization
angle is introduced to describe the energy associated with the
curvature. The calculated results are consistent with existing
numerical results based on ab initio calculations.

Moreover, based upon the relaxed equilibrium geometry
provided by the ab initio method [10], Milos̆ević et al [11]
applied the line-group symmetry-based force constant method
to calculate the vibrational modes of ultra-narrow SWCNTs, in
which the fitted force constants of narrow SWCNTs have been
adjusted with respect to the provided cylindrical web geometry.

Besides, the elastic properties for carbon nanotubes have
stimulated a large number of experimental and theoretical
studies [23]. In particular, the Young’s modulus is a significant
physical quantity which reflects the striction of equilibrium
structure in response to the load that is impressed. In [24], the
axial Young’s modulus of the SWCNT is measured as 1.2 TPa
by the atomic force microscope technique. By observing their
free-standing room-temperature vibrations in a transmission
electron microscope [25], the Young’s moduli for 27 nanotubes
in the diameter range 10–15 Å were measured, and the
average Young’s modulus is 1.25 − 0.35/+0.45 TPa [26].
An interesting fact was acknowledged that the Young’s
modulus of certain nanotubes is even higher than that of bulk
graphite.

There have been a large number of theoretical calculations
for the Young’s modulus and the Poisson ratio. Taking
3.4 Å as the thickness of the SWCNTs, the ab initio

method [21, 27, 28], tight-binding approximation [29, 30], and
force constant model [31] gave results for Young’s modulus
with a range from 1 to 1.24 TPa, and for the Poisson ratio
in a range of 0.16–0.27. In [32–36], the calculated Young’s
modulus is about 5 TPa with a thickness of 0.7 Å. The above
calculated results show up only a slight dependence on the radii
and chiralities. However, in [37–42], the calculated Young’s
modulus or the Poisson ratio are found to be chirality and
tube radius-dependent. In [37], the Poisson ratio of armchair
tubes has a value larger than that of a planar graphene sheet,
while for a zigzag tube it is smaller, and its planar sheet
limit is 0.21. In [38, 39, 41], the Poisson ratio decreases
with increasing tube diameter and has an upper limit to the
diameter of 0.16. Anyhow, to our knowledge the resolution
of the experimental measurements for the Young’s modulus
and Poisson ratio is still not yet satisfactory enough and
the various correspondending theoretical calculations are even
more diverse.

As we have seen above, figuring out the total potential
energy of SWCNTs as a functional of the cylindrical lattice
configuration is the key issue underlying the investigation of
the equilibrium structure, strain energy, Young’s modulus and
lattice dynamics of ultra-narrow tubes.

In this paper, we propose that the total potential energy
for SWCNTs can be extracted from the vibrational energy
of the planar graphene sheet with five force constants. In
this, the bi-linear forms of the lattice site displacements
are accounted for by the equilibrium lattice configuration of
the planar graphite as the reference point, while one of the
potential terms for the twist motion needs to be improved
by including a quartic term to account for the nonlinear
effect. One of the advantages of our proposal is that the
equilibrium structure, the elasticity, and the lattice dynamic
properties for all kinds of SWCNTs are calculated in terms
of the same set of six (5 + 1) force constants, which
essentially reflects a unified microscopic mechanism founded
on the five forms of motion of the graphite-type cylindrical
lattice sheet. Based upon this proposal, we have investigated
systematically the relaxed lattice configuration for narrow
SWCNTs, the strain energy, the Young’s modulus and the
Poisson ratio, and the lattice vibrational properties with respect
to the relaxed equilibrium tubule structure. The calculated
results are nicely in consistency with the existing experimental
measurements.

In section 2, the total potential energy for SWCNTs
is presented, and the relaxed equilibrium geometry and
corresponding strain energy are discussed. Section 3 is devoted
to the lattice dynamics for ultra-narrow SWCNTs, while
section 4 is devoted to the Young’s modulus and the Poisson
ratio. Finally, the conclusion is in section 5.

2. The relaxed equilibrium structure

2.1. The geometry

We recall the geometrical description for the relaxed
equilibrium structure of SWCNTs, in particular for ultra-
narrow tubes, following [10]. As for the cylindrical coordinate
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Figure 1. Sketch of carbon atoms on a cylindric surface.

description shown in figure 1, we first set the z axis to be along
the tube axis, while the x axis is fixed to pass through one
of the A atoms. We further introduce a planar image of the
cylindrical lattice sheet by unfolding the cylindrical tube into
a planar lattice sheet, which is actually a tangential plane with
the tangent line as a generatrix passing through the A atom,
and set atom A as the origin of the plane with coordinates of
(rA, 0, 0), where rA is the radius of atom A. The planar lattice
sheet is constituted of parallelogram primitive cells with �a1 and
�a2 as its basic vectors. The deviations of CNTs with relaxed
geometry from that of ideal geometry can be illustrated most
conveniently by the primitive cells on the image plane. For that
of ideal geometry, the basic vectors are of equal magnitude,
with an intra-angle of π/3 between themselves, while for those
of relaxed geometry, their magnitudes are no longer equal and
the angle can deviate from π/3. Meanwhile, the location of the
in-cell B atom relative to A atom can also deviate from that of
the ideal geometry.

Now we introduce the chiral vector �R = n1�a1 + n2�a2

initiated from the atom A along the y axis in the image sheet,
where R is the image circumference of a cylindrical lattice
sheet. We then introduce a screw vector �H = p1�a1 + p2�a2,
with integers p1 and p2 satisfying p1n2 − p2n1 = N and N
being the largest common divisor of the integer pair (n1, n2).
Exactly following [10] and [18], �H and �R

N constitute the
basic ingredients of the generalized motif cell, upon which
a generalized screw operation S(α, h) and a generalized N-
fold rotation operation CN can be established. The former is a
rotation α around the tube axis with a simultaneous translation
h along the tube axis; the latter is a rotation of 2π

N around
the tube axis. A generalized motif cell labeled (m, l) can
be generated from the (0, 0) cell by successive operations of
S(α, h) and CN for m and l times, respectively. For the in-
cell geometry of a generalized motif cell, originating from
atom A the position of atom B can be fixed by a rotation
α′ around the tube axis and two simultaneous translations
h′ and (r − rA) along the tube axis and the tube radius,
respectively.

As a result, the coordinates on the cylindrical lattice sheet
for each site (m, l, s) with s = A, B can be expressed as

�r(m, l, s) = (rs cos φ, rs sin φ, z),

rs = rA, φ = mα + l

N
2π,

z = mh (for A),

rs = r, φ = mα + l

N
2πr + α′,

z = mh + h′ (for B).

(1)

Meanwhile, the corresponding coordinates in the image plane
have the form

�r image(m, l, s) = (rs, φrs, z) (2)

with the x-components of both A and B atoms being constants,
respectively.

Therefore, the six GMVs (r , rA, α′, h′, α, and h) provide a
complete description for the geometry of the lattice structure of
SWCNTs, in which all the A and B atoms are allowed to sit on
different cylindrical surfaces with radii rA and r , respectively.

2.2. The total potential energy

In fact, in the sense of a quadratic approximation, the vibration
potential of the single-layer graphite lattice sheet provides a
proper description of various modalities of lattice motion. We
therefore propose that the total potential energy of SWCNTs
can be extracted from the vibration potential of a graphene
lattice sheet [43]4 as follows. First, the total potential energy
contributed by carbon atom 1, i.e. atom (0, 0, A), is composed
of the following five terms in which a local planar graphene
sheet is taken as the reference point:

UA = Vl + Vsl + VBB + Vrc + Vtw, (3)

where Vl and Vsl are the potentials of the spring forces between
the nearest-neighbor and the next-nearest-neighbor atom pair,
respectively, as shown in figure 1, VBB is the energy associated
with bond angle variations, Vrc describes out-of-surface bond
bending, i.e. a kind of strain force on atom i in the out-of-
surface direction from its three nearest neighbors in the curling
process, and Vtw is the twist potential energy:

Vl = kl

4

4∑

i=2

[(��ri − ��r1) · �el
1i ]2, (4)

Vsl = ksl

4

10∑

j=5

[(��r j − ��r1) · �el
1 j ]2, (5)

VBB = kBB

2

3∑

η=1

(cos �η − cos �0)
2, (6)

4 There are slight differences between our five force constants and those
of Aizawa et al, which does not make sense for a description of the lattice
dynamics of planar graphene sheet.
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Vrc = krc

2

[(
4∑

i=2

��ri − 3��r1

)
· �er

1

]2

, (7)

Vtw = ktw

4

∑

〈i, j〉
f (x1

i j), (8)

x1
i j = [(��ri − ��r j) − (��ri ′ − ��r j ′)] · �er

1k,

f (x) =

⎧
⎪⎨

⎪⎩

x2 − Kahx4, if |x | <
√

1
2Kah

,

1

4Kah
, if |x | �

√
1

2Kah
.

In equations (4) to (8), i = 2, . . . , 4 and j = 5, . . . , 10 are
the nearest-and next-nearest neighbors of atom 1 respectively,
�η with η = 1, 2, 3 represent the three bond angles with atom
1 as the common apex while �0 = 2π

3 is the bond angle in
the graphic plane, 〈i, j〉 represents a pair of atoms that are the
nearest neighbors to atom 1 with k being the third of its nearest
neighbors, and the pair 〈i ′, j ′〉 is the image of 〈i, j〉 referring
to a C2 rotation around the axis in �er

1k . Moreover,

��ri = �ri − �r 0
i (9)

is the displacement of the carbon atom i from the planar
graphene sheet �r 0

i to its counterpart in the tubal lattice sheet
�ri , in which i stands for the site index (m, l, s) defined on

the cylindrical lattice sheet. In addition, �el
1i = �r0

i −�r0
1

|�r0
i −�r0

1 | is the

unit vector pointing from atom 1 to atom i in the graphite
sheet, and �er

i and �er
1k are vertical unit vectors of the planar

graphene sheet located at the site i and the middle point of
sites 1 and k of the graphene sheet, respectively. All the unit
vectors are defined on the local reference graphene sheet and
are introduced to keep the rigid rotational invariance symmetry.
The above five potential terms in principle cover the main
features of the modalities of lattice deformation suggested by
Shen et al [20, 38], Chang et al [39] in their mechanical model.

Correspondingly, that part of total potential energy in
association with carbon atom B (0, 0, B) has a similar
expression to that of UA, but with its geometrical parameters
replaced by the counterpart of atom B.

Second, we express the lattice displacements in UA and
UB in terms of the generalized motif variables. This spells
out that the locally constructed (0, 0) generalized motif cell
with a pair of carbon atoms A and B can continue to form a
whole seamlessly closed cylindrical lattice sheet in which the
generalized screw as well as rotation symmetries are inherited.
As a result, the total potential energy of SWCNTs has the form
of a simple multiple of those potential energies associated with
a pair of nearest-neighboring atoms A and B, i.e. UA and UB

respectively,
Ut = N ∗ (UA + UB), (10)

where N is the number of generalized motif cells of SWCNTs
under consideration. The redundant counting in the total
potential energy contributed by different carbon atoms can be
accounted for by an appropriate re-setting for the values of the
relevant force constants. We further address that this sort of
parameterization procedure can be carried out for all kinds of
SWCNTs, including both chiral and achiral tubes.

The values of the force constants are kl = 305 N m−1,
ksl = 68.25 N m−1, kBB = 1.38×10−11 erg, krc = 14.8 N m−1,
ktw = 6.24 N m−1, and Kah = 2.5 Å

−2
. The frontal five force

constants come from vibration energy of the planar graphene
sheet [43] (see footnote 4). Since the twisting deformations
increase substantially with decreasing tube diameter—for
example, the twisting angle for the C–C bond can take a
value as large as 26◦ for the narrow SWCNT (6, 3)—an
additional force constant for the anharmonic improvement of
Kah in equation (8) has to be introduced. We notice here
that the differences in lattice dynamics between two such
types of system are essentially due to their different spatial
geometries, which are characterized by their own equilibrium
lattice structure.

2.3. The relaxed structure of SWCNTs

We introduce the total potential energy per atom, U , as

U = U(r, rA, α, h, α′, h′) = (UA + UB)/2. (11)

By minimizing U(r, rA, α, h, α′, h′) with respect to the
six GMVs, we obtain the optimized equilibrium geometry
described by the GMVs (r̄ , r̄A, ᾱ, h̄, ᾱ′, h̄′) as well as the strain
energy Us = U(r̄ , ¯rA, ᾱ, h̄, ᾱ′, h̄′). It is interesting to address
that the optimized equilibrium lattice configurations for all
tubes are shown to be r̄A = r̄ . This is because the total
energy Ut remains unchanged when the tube is rotated upside
down with atoms A and B mutually permuted, so the optimized
geometry must exhibit C2 symmetry. The reflected symmetry
σh with respect to the cross section is also maintained for
achiral tubes.

The various calculated lattice structure properties and
strain energies for narrow SWCNTs with a diameter of [2.6,
5] Å are listed in table 1, where the calculated GMVs
are comparable to those from ab initio calculations [10].
Moreover, it is shown that the curvature energy associated
with the fourth potential energy term in equation (7) dominates
the total strain energy, while the corresponding contributions
from the bond variation are usually much less than those
from the bond angle variations (see table 2). For a closer
examination, we find that the optimized carbon–carbon bond
lengths deduced from the parameters in table 1 for tubes (5,
0), (4, 2), (3, 3) are about 9% larger than the ab initio results
in [10]. We understand that such a discrepancy is essentially
due to the treatment of the next-neighbor potential energy. If
we artificially ignore this potential energy term, the resulting
bond lengths will meet those of the ab initio calculations.
This result is consistent with the corresponding results in [44],
where the next-neighbor potential energy favors increasing
bond lengths.

In [40], it is reported that the strain energy varies
with tubule radius as 1

r2 by applying the Tersoff–Brenner
interatomic potentials. Here we plot the strain energy versus
the radius in figure 2, which is comparable with the existing
result [21, 40] and can be fitted well by Es = c1

r2 + c2
r4 , in

consistency with the result of [20]. The coefficient of 1
r4 —

i.e. c2—is a bit large. This is because, in [20], there is no such
twisting energy term that we have.
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Table 1. The calculated results for the five GMVs with r̄A = r̄ and the strain energy for narrow SWCNTs.

(n1, n2) r (Å) α′ (rad) h ′ (Å) α (rad) h (Å) Es (eV)

(2, 2) 1.743 1.1036 0.000 1.5708 1.255 1.5596
(3, 1) 1.817 1.0019 0.337 4.5923 0.580 1.7596
(4, 0) 1.977 0.7854 0.613 0.7854 2.033 1.3636
(3, 2) 2.013 0.8460 0.148 2.4777 0.491 0.7977
(4, 1) 2.129 0.7512 0.416 4.9317 0.455 0.8171
(3, 3) 2.281 0.7088 0.000 1.0472 1.238 0.4522
(5, 0) 2.283 0.6283 0.652 0.6283 2.069 0.6484
(4, 2) 2.333 0.6788 0.250 2.0127 0.803 0.4781
(5, 1) 2.458 0.6075 0.475 5.1657 0.376 0.4606
(4, 3) 2.593 0.6000 0.112 1.7827 0.351 0.3083
(6, 0) 2.617 0.5236 0.672 0.5236 2.089 0.3759
(5, 2) 2.673 0.5652 0.324 2.6560 0.339 0.3163

Table 2. Contributions of five potential energy terms to the strain energy for tube (3, 3).

(3, 3) Vl Vsl VBB Vrc Vtw

(eV) 0.029 34 0.071 91 0.029 72 0.301 79 0.019 48

Figure 2. The strain energy as a function of radius for all tubes in
[1.3, 10.0] Å. This is compared with the ab initio calculations
[20, 21].

Our calculation shows that the radius and C–C bond
lengths of CNTs for the optimized lattice configuration are
always larger than those of the corresponding CNTs for the
ideal geometry. In figure 3(a), we display the three bond
lengths representatively in units of the graphene bond length,
1.42 Å, for (2n, n) tubes, with the relaxed geometry as
well as the ideal geometry. The relaxation, resulting from
the optimization procedure, would disentangle the warping-
induced tension and make the inter-atomic bond length longer.
To be precise, the bond lengths of the optimized lattice
configuration decrease with increasing diameter and maintain
values always larger than that of the graphene sheet. In
contrast, for tubes of ideal geometry the bond lengths increase
with increasing diameter and maintain values always smaller
than that of the graphene sheet. As we can see in figure 3(a),
one of the bond lengths of the tube (4, 2) is 1.39 Å for the ideal
geometry, while it is 1.57 Å for the case of relaxed geometry,
which is about 11% more than that of the graphene sheet.

As shown in figure 3(b), deviations of the bond angles
from those of graphene are really considerable for narrow tubes

Figure 3. The reduced C–C bond lengths from that of graphite and
the bond angles for different chiral tubes (2n, n) with the relaxed
geometry and the ideal geometry. Bond1, bond2, and bond3 are the
bonds between atom 1 and atoms 2, 3, and 4 in figure 1, respectively.
Bond angle i (i = 1, 2, 3) is the angle opposite bond i .

with a diameter smaller than 8 Å. On the other hand, as can
be seen in the same figure, this effect decreases quickly with
increasing tube diameter.

3. Calculation results and discussion of phonon
dispersion

In section 2, the relaxed equilibrium lattice configurations of
SWCNTs are derived using an optimization procedure applied

5
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Table 3. The values of two optical modes in the tangential plane from our calculation compared with the experimental results [46].

Optical mode (11, 10) (17, 9) (27, 4) (15, 14)

Calculated result 1597.3 1600.5 1602.5 1602.1
1600.7 1603.6 1605.5 1603.7

Experiment [46] 1566(7) 1572(13) 1577.5(10) 1573(7)
1593.5(6) 1591(8) 1593(5) 1592(5)

Figure 4. The dependence on radius of the relative frequency change
due to the relaxation effect for the optical mode along the z axis. The
small waviness of the line shows the dependence of the frequencies
on the chiral angle. For chiral and zigzag tubes, this mode is the
Raman-active mode.

to the proposed total potential energy. The vibrational potential
of SWCNTs is actually caused by the deviation of lattice sites
with respect to the relaxed equilibrium lattice configuration.
It is obvious that the vibrational potential of SWCNTs would
take the same form as the total potential energy, whereas the
equilibrium position of the lattice site in the planar graphene
sheet is therefore replaced by those in the relaxed cylindrical
lattice sheet; meanwhile, the nonlinear term is no longer
needed. The detailed modifications are as follows:

(1) ��ri = �ri −�ri0 is renamed by convention as the vibrational
displacement �ui with �ri0 the local planar graphene sheet to
be replaced by the relaxed equilibrium position of atom i
in the SWCNTs;

(2) cos �0 in equation (6) is no longer the bond angle for the
graphene sheet of 2

3π but the corresponding bond angle
for the relaxed equilibrium configuration, which depends
on distinct adjacent atom pairs that are nearest neighbors
to the common apex atom i ;

(3) �el
1i and �el

1 j are kept as the unit vectors pointing from
atom i and j to atom 1, respectively. �er

1 is replaced

by �erc
1 = −

∑4
i=2 �ri0

|∑4
i=2 �ri0 | and �er

1k now becomes the unit

vector along the radial direction of the mid-point of
atoms 1 and k. We stress that all these unit vectors are
defined on the cylindrical lattice sheet with the optimized
equilibrium geometry, which plays a crucial role in
keeping rigid rotational invariance for the vibrational
potential of relaxed SWCNTs;

(4) The coefficient Kah is taken to be zero.

Table 4. The values of RBM from our calculation compared with
the experiments or other calculations.

RBM (2, 2) (5, 0) (3, 3) (4, 2)
Calculated result 804.3 561.3 550.8 538.6
Comparison (787)a (550)b / (510)b

RBM (11, 10) (16, 7) (15, 6)
Calculated result 160.0 142.5 155.2
Comparison (169.5(7))c (154(5))c (166(1))c

a The ab initio calculations from [9].
b The experimental results from [8].
c The experimental results from [46] and [47].

We emphasize here that the five force constants of the
above proposed quadratic vibrational energy are the same as
those in section 2.2. They are applied to all kinds of SWCNT
including those with small radii. This is because the rigid
rotation symmetry of the SWCNTs is kept precisely. Also, the
curvature effect for the vibrational modes has been properly
taken care of by the quadratic expression introduced above.

It is straightforward that such an obtained vibrational
potential can again be parameterized in terms of the GMVs.
Taking the advantage of the GMV description for the
cylindrical lattice configuration, the underlined generalized
screw and rotation symmetries ensure that the lattice dynamic
equation, even for tubes with relaxed geometry, can be
decomposed into a six-dimensional eigenvalue problem and
becomes treatable.

For tubes with diameters from 2.8 to 25 Å, we calculate all
the Raman- and infrared-active modes [45], and the velocities
for the twisting (TW) and the longitude acoustic (LA) modes.

The relaxation effect for the non-zero vibrational modes
of the tubes with relaxed geometry exhibits itself as a
frequency lowering (mode softening) in comparison with their
counterpart for tubes of ideal geometry. The effect of the
relaxation on the optical mode along the z axis is shown in
figure 4. The relaxation softens this mode considerably for
narrow tubes. For example, for tubes with a radius as narrow
as 2 Å, this mode is softened by as much as 8% relative to that
of the ideal geometry.

The calculated frequencies for the optical mode in
the tubal tangential plane coincide excellently with the
experimental measurements on tubes (11, 10), (17, 9), (27, 4),
(15, 14) [46]; see table 3. For the RBM, the calculated results
from our model are in good agreement with the correspondent
results from the experiments on tubes (5, 0), (4, 2), (11, 10),
(16, 7), (15, 6) listed in table 4. Also, for the tube (2, 2),
the calculated result is consistent with that of the ab initio
calculation [9] (see table 4). Moreover, it can be seen from
table 4 that the smaller tube has the larger RBM frequency.
This is consistent with some other calculation results [8, 11].
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Table 5. Polarization vectors �u ≡ (�u(A), �u(B)) as functions of r (r ∈ [1.3, 10.0] Å) and θ , where �u(A) and �u(B) indicate the displacement
vectors of atoms A and B in the (0, 0) unit cell, respectively. For the three modes in this table, ur (B) = ur (A), uφ(B) = −uφ(A),
uz(B) = −uz(A).

(κ, n) = (0, 0) Vector(θ) fi(r)

R1 (RBM) ur (A) f0(r) f0(r) = 0.7072 − 0.0026
r2

uφ(A) f1(r) sin 3θ f1(r) = − 0.0212
r + 0.1111

r2

uz(A) f1(r) cos 3θ f1(r) = − 0.0344
r + 0.2167

r2

R2 (�eφ OP) ur (A) f1(r) sin 3θ f1(r) = 0.0211
r − 0.1064

r2

uφ(A) f0(r) + f1(r) cos 12θ f0(r) = 0.6975 + 0.0313
r2 , f1(r) = 0.0084 − 0.0248

r2

uz(A) f1(r) sin 6θ + f2(r) sin 12θ f1(r) = 0.1642 − 0.3742
r2 , f2(r) = −0.0283 + 0.1512

r2

R3 (�ez OP) ur (A) f1(r) cos 3θ f1(r) = 0.0348
r − 0.2189

r2

uφ(A) f1(r) sin 6θ + f2(r) sin 12θ f1(r) = 0.1643 − 0.3759
r2 , f2(r) = −0.0283 + 0.1510

r2

uz(A) f0(r) + f1(r) cos 12θ f0(r) = 0.6975 + 0.0299
r2 , f1(r) = 0.0084 − 0.0236

r2

Figure 5. Phonon dispersion curves for SWCNT (4, 2) in the
representation of helical and rotational quantum numbers. The
flexure mode—i.e. the transversal acoustic mode—shows up at
(κ, n) = (α, 1), where α is in the unit of 2π . It is doubly degenerate.

We take SWCNT (4, 2) as a typical example of a narrow
tube. Its dispersion is shown in figure 5, with the helical and
rotational quantum numbers κ and n as n = 0, 1 and κ ∈
[0, π]. In the neighborhood of (κ, n) = (0, 0), there are two
zero-frequency modes, TW and LA, with acoustic velocities
of CTW = 13.6 km s−1 and CLA = 20.7 km s−1, respectively.
It is interesting to find that CTW is much smaller than that in
the graphite plane. This effect is expected to be measured in
experiments with technical developments. The frequencies of
the RBM, the �er optical (OP) mode, the �eφ OP mode and the
�ez OP mode are calculated to be 538.6, 1081.5, 1544.2 and
1487.7 cm−1, respectively. At (κ, n) = ±(α, 1) with α =
2.01 rad, there are two transverse acoustic modes—i.e. the
flexure modes—with parabolic dispersions of ω2 = β2(κ∓α)4

in the low-frequency limits. These are the consequence of the
rotational invariance of our vibration potential [48, 49].

For tubes with diameter larger than approximately 8 Å
where the curvature effect dies away, the calculated frequencies
(figure 4), the sound velocities for various vibration modes,
and even the bond length (figure 3) etc are in accord with
those of tubes of ideal geometry [49]. We notice that the
slight difference in force constants between the present paper

and [49] have no substantial effect on the lattice vibrational
properties.

Although the lattice structure for the relaxed narrow SWC-
NTs deviates from that of the ideal geometry considerably, the
chiral index (n1, n2) for the relaxed SWCNTs retains the sym-
metry information inherited from the hexagonal planar lattice
sheet. As one might expect, our calculation verifies that var-
ious physical quantities can be expanded in terms of cos 3nθ

and sin 3nθ , n = 1, 2, . . ., with the same expansion forms
as those of the ideal geometry, in which θ is the chiral an-
gle defined for the corresponding tube with ideal geometry as

θ = arctan
√

3n2
2n1+n2

. As an example, in table 5 we show our fit-
ted polarization vectors for the RBM and two optical modes
in the tangential plane at (κ, n) = (0, 0). The corresponding
coefficients are shown to be almost the same as those in table
4 of [49].

4. Young’s modulus and the Poisson ratio

The relaxed lattice configuration provides itself as the proper
minimum of the total potential energy. In particular, the
equilibrium lattice configuration for the loaded SWCNTs can
also be performed, with the result that the calculation of various
strain-induced physical quantities such as Young’s modulus
and the Poisson ratio can be carried out straightforwardly.
Among the GMVs, h and h′ are variables of the longitudinal
degrees of freedom, while r , α and α′ are variables of
peripheral degrees of freedom. However, the experimentally
measured longitudinal stretching should correspond to variable
h, while the variable h′ essentially describes the microscopic
in-cell displacement. Young’s modulus for the SWCNTs are
introduced as:

Y = ∂2 E

∂ε2
11

∣∣∣∣
zero stress except the (z, z) component

(12)

where ε11 = �h
h is the longitudinal strain, and the derivatives

are taken with all the other GMVs r, α, α′ and h′ being freely
relaxed, which corresponds to the boundary condition that all
the components of the stress tensor are zero except for the
(z, z) component. We stress that such a calculation of Young’s

7
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Table 6. The large-diameter limits for Young’s modulus and the Poisson ratio from our calculation and other existing results are compared
with the experiment data.

Experiment [51] Our work Theorya Theoryb Theoryc

Y (eV) 56.43 56.3 60 69 53.3
μ 0.17 0.166 0.19 0.25 0.277

a The ab initio method [21].
b The tight-binding approximation [29].
c The force constant model [31].

modulus for the cylindrical lattice sheet is consistent with
the classical definition of Young’s modulus in the continuum
limit [50]. Accordingly, the Poisson ratio

μ =
∣∣∣∣
ε22

ε11

∣∣∣∣
zero stress except the (z, z) component

, (13)

with ε22 being the peripheral strain induced under the same
condition as explained above.

The calculated Young’s modulus and Poisson ratio for
various narrow SWCNTs can be fitted well as functions of the
radius r and chiral angle θ ,

Y = 56.3 − 15.1 + 21.8 cos 6θ

r 2
, (14)

μ = 0.166 + 0.235 + 0.246 cos 6θ

r 2
, (15)

where Y is in the unit of eV, r is in the range [1. 3, 10] Å,
θ is the chiral angle defined for the corresponding SWCNT
with ideal geometry, as explained in the previous section, and
the relative fitting error is kept less than 1 × 10−3. As shown
in equations (14) and (15), Young’s modulus and the Poisson
ratio in the large-diameter limit have values of 56.3 eV and
0.166 eV, respectively, which are in good agreement with the
experimental results for graphite [51] (see table 6). In the
case of narrow tubes, they are significantly chirality-dependent.
For example, the Young’s modulus of three SWCNTs (3, 3),
(4, 2), and (5, 0), calculated as 57.74, 54.94, and 49.26, are
considerably different from each other, although they have
almost the same diameter.

Furthermore, we display the radius dependence of Young’s
modulus in figure 6 for two species SWCNTs: armchair
tubes (n, n), and zigzag tubes (n, 0). This shows clearly
that the Young’s modulus of armchair tubes decreases with
increasing tube diameter and always takes values larger than
that for planar graphite. Meanwhile, for zigzag tubes it exhibits
contrary behavior, i.e. increases with increasing diameter and
maintains a value always below that for a graphene sheet.
It was reported in [26] that, among 27 samples of carbon
nanotubes, some of them are measured to have a Young’s
modulus higher than that of bulk graphite. Meanwhile, to our
knowledge, most of the existing theoretical estimations [52]
can only provide values of Young’s modulus less than that for
a graphene sheet for any kind of SWCNTs. Our calculation
provides evidence that armchair tubes are stiffer, while zigzag
tubes are softer due to their chirality-dependence.

Figure 6. The Young’s modulus for armchair and zigzag tubes. The
lines are calculated from the second derivatives of the energy per
atom with respect to the uniform strain along the tubule axis
direction. Also, the dashed lines are calculated from equation (16)
using the velocity method.

It is known that, following the elasticity theory of the
continuum medium, Young’s modulus as well as the Poisson
ratio can be derived from the relevant sound velocities [37, 50],

Y = ρ ∗ V 2
L , (16)

μ = 0.5 ∗
(

VL

VT

)2

− 1, (17)

where the two expressions are also referenced to the boundary
condition of only the (z, z) component of the stress tensor
being non-zero. Therefore, we may calculate Young’s
modulus and the Poisson ratio from the relevant sound
velocities obtained in the last section shown in figure 6
for comparison. We emphasize that the Young’s modulus
(Poisson ratio) calculated from the strain energy following
equations (12) and (13) and those calculated from the sound
velocities following equations (16) and (17) are essentially
two distinct independent calculations. The former is in the
sense of a microscopic calculation, following from the total
potential energy equations (4)–(8), while the latter is a sort of
macroscopic calculation with the sound velocities as its input,
although this is provided by the microscopic vibrational energy
(introduced in section 3). We can see from figure 6, for each of
the two species of SWCNT (n, n) and (n, 0), that the Young’s
moduli produced by the two kinds of calculations approach
each other as the radius increases and have the same r → ∞
limit as the experimental Young’s modulus for graphite. Such

8
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Figure 7. The Poisson ratio for different armchair and zigzag tubes.

a result arises from the intrinsic consistency between our total
potential energy expression and that of the vibrational energy.
The difference between the two kinds of calculations becomes
apparent when the tube radius decreases. We understand such
a phenomenon as the calculation following from the theory of
elasticity being macroscopic in nature, which would result in
failure for ultra-narrow tubes.

In figure 7, we show the calculated Poisson ratios for
armchair (n, n) and zigzag (n, 0) tubes as a function of radius.
The values of the Poisson ratio are in the order such that those
for a zigzag tube are the largest and those for an armchair tube
are the smallest. This is consistent with the corresponding
result of ab initio calculations [21].

5. Conclusions

In this paper, we propose a lattice dynamic treatment for
the total potential energy of SWCNTs which is, apart from
a parameter for the nonlinear effects, extracted from the
vibrational energy of the planar graphene sheet. It is
encouraging that such a quadratic form applies not only for
SWCNTs of large radius but also to narrow SWCNTs in
satisfaction with the inclusion of the nonlinear parameter. The
modality of the lattice atoms, even for cases with a severe
curvature effect, can be properly characterized by the six force
constants.

Based upon the proposal, we investigated systematically
the relaxed lattice configuration for narrow SWCNTs, the
strain energy, Young’s modulus and the Poisson ratio, as
well as the lattice vibrational properties with respect to the
relaxed equilibrium tubule structure using the same set of force
constants, independent of the tube structure. In particular,
with the application of GMVs we have not only successfully
extended the locally introduced total potential energy to the
whole tube, but we have also made the lattice dynamics
for SWCNTs with relaxed geometry treatable. Comparing
with the corresponding results obtained from tubes with the
ideal geometry, we have verified that the relaxation effect
makes the bond length longer and the frequencies of various
optical vibrational modes softer. Moreover, our approach
not only deduces the proper large-diameter limit values of

Young’s modulus and the Poisson ratio, but also provides
strong evidence that SWCNTs with different chirality could be
stiffer or softer than the planar graphene sheet. The calculated
RBM and optical modes in the tubule’s tangential plane are
also in good agreement with the experimental measurements.
In addition, we realized that the chiral symmetry-based general
expansion formulas for different physical quantities survive for
SWCNTs with relaxed geometry, in the sense that they replace
the chiral angle with its counterpart defined in tubes of ideal
geometry.
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